A q-Analogue of Graham, Hoffman and Hosoya's Theorem

نویسنده

  • Sivaramakrishnan Sivasubramanian
چکیده

Graham, Hoffman and Hosoya gave a very nice formula about the determinant of the distance matrix DG of a graph G in terms of the distance matrix of its blocks. We generalize this result to a q-analogue of DG. Our generalization yields results about the equality of the determinant of the mod-2 (and in general mod-k) distance matrix (i.e. each entry of the distance matrix is taken modulo 2 or k) of some graphs. The mod-2 case can be interpreted as a determinant equality result for the adjacency matrix of some graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial proof of Graham Higman's conjecture related to coset diagrams

Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...

متن کامل

Independent Sets and Eigenspaces

The problems we study in this thesis arise in computer science, extremal set theory and quantum computing. The first common feature of these problems is that each can be reduced to characterizing the independent sets of maximum size in a suitable graph. A second common feature is that the size of these independent sets meets an eigenvalue bound due to Delsarte and Hoffman. Thirdly, the graphs t...

متن کامل

A q-ANALOGUE OF THE FOUR FUNCTIONS THEOREM

In this article we give a proof of a q-analogue of the celebrated four functions theorem. This analogue was conjectured by Björner and includes as special cases both the four functions theorem and also Björner’s q-analogue of the FKG inequality.

متن کامل

The starlikeness, convexity, covering theorem and extreme points of p-harmonic mappings

The main aim of this paper is to introduce three classes $H^0_{p,q}$, $H^1_{p,q}$ and $TH^*_p$ of $p$-harmonic mappings and discuss the properties of mappings in these classes. First, we discuss the starlikeness and convexity of mappings in $H^0_{p,q}$ and $H^1_{p,q}$. Then establish the covering theorem for mappings in $H^1_{p,q}$. Finally, we determine the extreme points of the class $TH^*_{p}$.

متن کامل

On some Generalized q-Eulerian Polynomials

The (q, r)-Eulerian polynomials are the (maj−exc, fix, exc) enumerative polynomials of permutations. Using Shareshian and Wachs’ exponential generating function of these Eulerian polynomials, Chung and Graham proved two symmetrical q-Eulerian identities and asked for bijective proofs. We provide such proofs using Foata and Han’s three-variable statistic (inv−lec, pix, lec). We also prove a new ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2010